
© 2011 Carnegie Mellon University

SEI Proprietary. Distribution: Director’s Office Permission Required

Successful Development Efforts:

Standards, People, & Culture:

The Enterprise Perspective

Dr. Douglas C. Schmidt

Deputy Director, Research &
Chief Technology Officer

September 16, 2011

2© 2011 Carnegie Mellon University

• Organizational impediments

• Economic impediments

• Policy impediments

• Political impediments

• Psychological impediments

• …

Human NatureTechnical Complexities

Accidental Complexities

• Low-level APIs & debugging tools

• Interoperability & portability

Inherent Complexities

• Quality of service (QoS) & security

• Scheduling & synchronization

• Intermittent connectivity

• …

www.cs.wustl.edu/~schmidt/reuse-lessons.html

What’s So Hard About Software Development?

3© 2011 Carnegie Mellon University

Endsystem Endsystem

Operating
System

Operating
System

Wireless/Wireline Networks

Sensor
Systems

Weapons
Systems

C2 System Weapons
Control

Technology base:
Proprietary MW
VxWorks
FDDI/LANS

Engagement
System

Technology base:
Proprietary MW
POSIX
VME/1553

Kill

Eval
SchedEO Illum

Network

AAW

EG AAW
AAWTBM

EG AAWAAW

AAW

MG

TMB

MG

Technology base:
Proprietary MW
Mercury
Link16/11/4

Technology base:
DII-COE
POSIX
ATM/Ethernet

Technology base:
Proprietary MW
POSIX
NTDS

Evolution of DoD Software Development
Legacy DoD systems have

historically been:

• Stovepiped

• Proprietary

• Brittle & non-adaptive

• Expensive

• Vulnerable

Consequence: Small

HW/SW changes have big

impact on DRE system

QoS & maintenance

Applications Applications

http://www.takeourword.com/images/persistence-of-memory.jpg

4© 2011 Carnegie Mellon University

Applications

Endsystem

Applications

EndsystemWireless/Wireline Networks

Operating
System

Operating
System

Sensor
Systems

Weapons
Systems

C2 System Weapons
Control

Engagement
System

Common ServicesCommon Services

Distribution MiddlewareDistribution Middleware

Infrastructure MiddlewareInfrastructure Middleware

Domain-Specific Services Domain-Specific Services

Middleware

• Middleware has effectively factored out many reusable services from

traditional DRE application responsibility

• Essential for product-line architectures, common operating

environments, open architectures, etc.

Wireless/Wireline Networks

Evolution of DoD Software Development

5© 2011 Carnegie Mellon University
5

The Evolution of Middleware

Historically, mission-critical apps were built
directly atop hardware

• Tedious, error-prone, & costly over lifecycles

Standards-based COTS middleware helps

support key mission goals:

• Control end-to-end resources & QoS

• Leverage hardware & software technology

advances

• Evolve to new environments & requirements

• Provide a wide array of reusable, off-the-

shelf developer-oriented services

There are layers of middleware, just
like there are layers of networking
protocols

Hardware

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

& OS

Operating Systems

& Protocols

Applications

7© 2011 Carnegie Mellon University
7

www.cs.wustl.edu/~schmidt/ACE.html

Host Infrastructure Middleware
• Host infrastructure middleware encapsulates & enhances

native OS mechanisms to create reusable network

programming components

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

Synchronization

Memory

Management

Physical

Memory

Access

Asynchronous

Event Handling

Scheduling

Asynchronous

Transfer of

Control

www.rtj.org

• Examples

• Java Virtual Machine (JVM), Common Language Runtime

(CLR), ADAPTIVE Communication Environment (ACE)

Host infrastructure middleware components abstract away

many tedious & error-prone aspects of low-level OS APIs

8© 2011 Carnegie Mellon University
8

Distribution Middleware

• Distribution middleware defines higher-level distributed

programming models whose reusable APIs & components

automate & extend native OS capabilities

Distribution middleware avoids hard-coding client & server application

dependencies on object location, language, OS, protocols, & hardware

• Examples

• OMG Real-time CORBA & the Data Distribution Service

(DDS), W3C Simple Object Application Protocol (SOAP)

Remote Procedure Calls (RPCs)

Client
OBJ

REF

Object

(Servant)
in args

operation()

out args + return

IDL

STUBS

IDL

SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority

Propagation

Thread

Pools

Standard

SynchronizersExplicit

Binding

Portable Priorities

Scheduling

Service

en.wikipedia.org/wiki/Data_Distribution_Servicerealtime.omg.org/

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

9© 2011 Carnegie Mellon University
9

Common Middleware Services

• Common middleware services augment distribution

middleware by defining higher-level domain-independent

services that focus on programming “business logic”

• Common middleware services

support many recurring distributed

system capabilities, e.g.,

• Transactions & load balancing

• Authentication & authorization

• Database connection pooling &

concurrency control

• Active or passive replication

• Dynamic resource management

• Examples

• Sun’s J2EE, Microsoft’s .NET, W3C Web Services,

CORBA Component Model & Object Services

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

10© 2011 Carnegie Mellon University
10

Domain-Specific Middleware

Modalities

e.g., MRI, CT, CR,

Ultrasound, etc.

Siemens MED Syngo

• Domain-specific services for

distributed electronic medical

systems

• Used by all Siemens

MED business units

worldwide

• Domain-specific middleware services are tailored to the

requirements of particular domains, such as telecom, e-

commerce, health care, process automation, avionics, etc.

Boeing Bold Stroke

• Domain-specific

services for avionics

mission computers

• Examples

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

11© 2011 Carnegie Mellon University
11

• More emphasis on integration rather than

programming

• Increased technology convergence &

standardization

• Mass market economies of scale for

technology & personnel

• More disruptive technologies & global

competition

• Lower priced—but often lower quality—

hardware & software components

• The decline of internally funded R&D

• Potential for complexity cap in next-

generation complex systems-of-systems

Consequences of Standards & Commoditization

Not all trends bode well

for traditional leaders

Ultimately, success depends on mastery of

distributed real-time & embedded (DRE) systems

Hardware

Domain-Specific

Services

Common

Middleware Services

Distribution

Middleware

Host Infrastructure

Middleware

Operating Systems

& Protocols

Applications

12© 2011 Carnegie Mellon University

SEI Proprietary; Distribution: Director’s Office Permission Required

Business Drivers

• i.e., need a “succeed or die”

business case

Enlightened Managers

• Must be willing to defend the

sacrifice of some short-term

investment for long-term payoff

Experienced Senior Architects

• Responsible for communicating

completeness, correctness, &

consistency of the software

architecture to stakeholders

Solid Key Developers

• Responsible for design &

evolution of specific

architectural topic(s)/comps

Model-driven
Software

Engineering

Standard

Middleware,

Frameworks,

Components, &

Product Lines

Patterns &

Pattern

Languages

Key Technologies

It’s crucial to have an effective process for growing architects & key developers

Ingredients for Software Development Success

13© 2011 Carnegie Mellon University

SEI Proprietary; Distribution: Director’s Office Permission Required

Process Traits

• Death through quality

• “Process bureaucracy”

• Analysis paralysis

• “Zero-lines of code seduction”

• Infrastructure churn

• e.g., programming to low-level APIs

Organizational Traits

• Disrespect for quality developers

• “Code monkeys” vs. “software

artists”

• Top-heavy bureaucracy

Sociological Traits

• The “Not Invented Here” syndrome

• Modern method madness

Traits of Dysfunctional Software Organizations

www.cs.wustl.edu/~schmidt/editorials.html

14© 2011 Carnegie Mellon University

SEI Proprietary; Distribution: Director’s Office Permission Required

Traits of Successful Software Organizations
Strong business & technology leaders

• Understand the role of software

technology

• Don’t wait for “silver bullets”

Clear architectural vision

• Know when to build vs. buy

• Avoid worship of specific tools &

technologies

Effective use of prototypes, demos, &

spirals

• Reduce risk & get user feedback

Commitment to/from skilled developers

• Know how to motivate software

developers & recognize the value of

thoughtware

15© 2011 Carnegie Mellon University

SEI Proprietary; Distribution: Director’s Office Permission Required

Concluding Remarks

Take-home Points

• Software-reliant systems often fail due to

lack of

• Awareness/acceptance of business

drivers

• Management commitment

• Systematic mastery & application of

key technologies

• Developer education & training

• Success is achievable, though not easy

• A good process is necessary, but not

sufficient

False Prophets (Silver Bullets)

• Programming Languages

• Methodologies

• Processes

• Middleware

• Model-Driven Engineering

• Organization-central solutions

• Technology-centric solutions

See blog.sei.cmu.edu for more discussions of SEI software R&D activities

